科创板交易制度会改善我国股票市场质量吗-基于多主体建模的仿真分析

梁睿, 董纪昌, 贺舟, 刘颖

系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (1) : 76-83.

PDF(839 KB)
PDF(839 KB)
系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (1) : 76-83. DOI: 10.12011/SETP2019-2688
论文

科创板交易制度会改善我国股票市场质量吗-基于多主体建模的仿真分析

    梁睿1, 董纪昌1, 贺舟1,2, 刘颖1,2
作者信息 +

Will Sci-Tech innovation board improve the quality of China's stock market: Based on multi-agent modeling

    LIANG Rui1, DONG Jichang1, HE Zhou1,2, LIU Ying1,2
Author information +
文章历史 +

摘要

科创板自开市以来得到了市场参与者的广泛关注.前10个交易日内,科创板的股票价格全部翻倍.科创板的交易机制采用T+1制度,上市后前5个交易日不设涨跌幅限制,上市5个交易日后,涨跌幅限制为20%.科创板的推出对于我国股票市场质量产生了哪些影响?文章采用多主体建模方法构建符合我国真实市场的人工股票市场模型,模拟科创板的运行机制,从价格发现效率、流动性、波动性三方面衡量股票市场质量.研究结果表明,相比于主板,科创板交易制度提高了市场的价格发现效率,降低了市场流动性,加剧了市场波动.

Abstract

Sci-Tech innovation board has received extensive attention from market participants since its opening. Within the first 10 trading days, the stock price of Sci-Tech innovation board all doubled. The trading mechanism of Sci-Tech innovation board adopts the T+1 trading mechanism. There is no price limit in the first 5 trading days, and the price limit is 20% after the first 5 trading days. What effect did the introduction of Sci-Tech innovation board have on the quality of China's stock market? This paper adopts multi-agent modelling to build an artificial stock market model in line with China's real market, simulates the trading mechanism of Sci-Tech innovation board, and measures the quality of the stock market from three aspects:Price discovery efficiency, market liquidity and market volatility. The results show that compared with the main board, the trading system of Sci-Tech innovation board improves the price discovery efficiency of the market, reduces market liquidity, and exacerbates market fluctuations.

关键词

科创板 / 多主体建模 / 人工股票市场 / 涨跌幅限制

Key words

Sci-Tech innovation board / multi-agent modelling / artificial stock market / price limit

引用本文

导出引用
梁睿 , 董纪昌 , 贺舟 , 刘颖. 科创板交易制度会改善我国股票市场质量吗-基于多主体建模的仿真分析. 系统工程理论与实践, 2022, 42(1): 76-83 https://doi.org/10.12011/SETP2019-2688
LIANG Rui , DONG Jichang , HE Zhou , LIU Ying. Will Sci-Tech innovation board improve the quality of China's stock market: Based on multi-agent modeling. Systems Engineering - Theory & Practice, 2022, 42(1): 76-83 https://doi.org/10.12011/SETP2019-2688
中图分类号: F832.51    F224   

参考文献

[1] Liu X, Cao H. Price limit and the stability of stock market:An application based on multi-agent system[C]//International Conference on Artificial Intelligence, IEEE, 2011.
[2] Farag H. Price limit bands, asymmetric volatility and stock market anomalies:Evidence from emerging markets[J]. Global Finance Journal, 2013, 24(1):85-97.
[3] Kim K A, Liu H, Yang J J. Reconsidering price limit effectiveness[J]. Journal of Financial Research, 2013, 36(4):493-518.
[4] Farag H. The effectiveness of competing regulatory regimes and the switching effects:Evidence from an emerging market[J]. Global Finance Journal, 2014, 25(2):136-147.
[5] Deb S S, Kalev P S, Marisetty V B. Price limits and volatility[J]. Pacific-Basin Finance Journal, 2017, 45:142-156.
[6] 穆启国, 刘海龙, 吴冲锋. 影响股票达到涨跌幅限制的因素分析[J]. 系统工程理论与实践, 2003, 23(9):61-66. Mu Q G, Liu H L, Wu C F. The factor analysis of frequently price-imit-hits[J]. Systems Engineering-Theory & Practice, 2003, 23(9):61-66.
[7] Hommes C H. Heterogeneous agent models in economics and finance[M]//Handbook of Computational Economics, 2006, 2:1109-1186.
[8] LeBaron B. Chapter 24 Agent-based computational finance[M]//Handbook of Computational Economics, 2006, 2:1187-1233.
[9] Yeh C H, Yang C Y. Examining the effectiveness of price limits in an artificial stock market[J]. Journal of Economic Dynamics and Control, 2010, 34(10):2089-2108.
[10] 鲍勤, 孙艳霞. 网络视角下的金融结构与金融风险传染[J]. 系统工程理论与实践, 2014, 34(9):2202-2211. Bao Q, Sun Y X. Financial structure and financial contagion from the network perspective[J]. Systems Engineering-Theory & Practice, 2014, 34(9):2202-2211.
[11] 韦立坚, 张维, 熊熊. 股市流动性踩踏危机的形成机理与应对机制[J]. 管理科学学报, 2017, 20(3):1-23. Wei L J, Zhang W, Xiong X. The mechanism and solution for the liquidity stampede crisis in stock markets[J]. Journal of Management Sciences in China, 2017, 20(3):1-23.
[12] 高言, 李昭辉. 基于人工股票市场的财富分布及演化研究[J]. 复杂系统与复杂性科学, 2015(12):17-27. Gao Y, Li Z H. The distribution and dynamics of investors' wealth on an artificial financial market[J]. Complex Systems and Complexity Science, 2015(12):17-27.
[13] 许敏, 刘善存. 不同类型知情者信息性交易概率及噪声问题[J]. 系统工程, 2009(6):35-41. Xu M, Liu S C. The probability of informed trading in different informed traders and noise issue[J]. Systems Engineering, 2009(6):35-41.
[14] 安实, 张少军, 高文涛. 指令驱动市场股票信息性交易概率的实证研究[J]. 系统工程, 2007(10):15-19. An S, Zhang S J, Gao W T. An empirical research on the probability of informed trading in order-driven stock market[J]. Systems Engineering, 2007(10):15-19.
[15] 熊熊, 梁娟, 张维. T+0交易制度对股票市场质量的影响分析[J]. 系统科学与数学, 2016, 36(5):683-697. Xiong X, Liang J, Zhang W. Analyzing the impact of T+0 trading mechanism on stock market quality[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(5):683-697.
[16] 方立兵, 刘烨. 融资融券大扩容:标的股票定价效率提升了吗?[J]. 证券市场导报, 2014(10):56-61. Fang L B, Liu Y. The expansion of margin trading and short selling:Does the underlying stock pricing efficiency upgrade?[J]. Securities Market Herald, 2014(10):56-61.
[17] Theissen E. Market structure, informational efficiency and liquidity:An experimental comparison of auction and dealer markets[J]. Journal of Financial Markets, 1998, 3(4):333-363.
[18] Nagel S. Evaporating liquidity[J]. Review of Financial Studies, 2012, 25(7):2005-2039.
[19] Rosch C G, Kaserer C. Market liquidity in the financial crisis:The role of liquidity commonality and flight-to-quality[J]. Journal of Banking & Finance, 2013, 37(7):2284-2302.
[20] 许香存, 李平, 曾勇. 集合竞价透明度提高对市场流动性的影响-基于中国股市开盘的实证研究[J]. 管理学报, 2010, 7(1):123-130. Xu X C, Li P, Zeng Y. The impact of increase in the transparency of call auction on market liquidity:Evidence from the opening in China stock markets[J]. Chinese Journal of Management, 2010, 7(1):123-130.
[21] 张涤新, 眭以宁. 深圳股票市场的日内流动性研究[J]. 系统科学与数学, 2015, 35(12):1487-1500. Zhang D X, Sui Y N. An analysis of intraday patterns in bid-ask spreads:Evidence from the Shenzhen stock exchange[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(12):1487-1500.
[22] 王宇超, 李心丹, 刘海飞. 算法交易的市场影响研究[J]. 管理科学学报, 2014, 17(1):57-71. Wang Y C, Li X D, Liu H F. Market impact of algorithmic trading[J]. Journal of Management Sciences in China, 2014, 17(1):57-71.
[23] 王春峰, 张驰, 房振明. 中国股市收益率与异质波动性关系研究[J]. 运筹与管理, 2015, 24(5):222-227. Wang C F, Zhang C, Fang Z M. A study on the relationship between the Chinese stock market returns and idiosyncratic volatility[J]. Operations Research and Management Science, 2015, 24(5):222-227.
[24] 张普, 陈亮, 曹启龙. 信息视角下基于异质信念的股票波动性价值研究[J]. 管理科学, 2018, 31(2):147-160. Zhang P, Chen L, Cao Q L. Study of stocks' volatility value based on heterogeneous beliefs from informational perspective[J]. Journal of Management Science, 2018, 31(2):147-160.
[25] 熊熊, 刘俊, 许海川, 等. 期现套利对我国股指期货市场波动性影响分析[J]. 系统工程理论与实践, 2014, 34(3):623-630. Xiong X, Liu J, Xu H C, et al. Analyzing the impact on stock index futures market volatility of arbitrage[J]. Systems Engineering-Theory & Practice, 2014, 34(3):623-630.

基金

国家自然科学基金应急管理项目(71850014);国家自然科学基金重点项目(71532013);国家自然科学基金面上项目(71871210);中国科学院大学优秀青年教师科研能力提升项目
PDF(839 KB)

1622

Accesses

0

Citation

Detail

段落导航
相关文章

/