基于直觉模糊相似度的直觉模糊三支决策方法

刘久兵, 周献中, 李华雄, 黄兵, 顾萍萍

系统工程理论与实践 ›› 2019, Vol. 39 ›› Issue (6) : 1550-1564.

PDF(1061 KB)
PDF(1061 KB)
系统工程理论与实践 ›› 2019, Vol. 39 ›› Issue (6) : 1550-1564. DOI: 10.12011/1000-6788-2017-1800-15
论文

基于直觉模糊相似度的直觉模糊三支决策方法

    刘久兵1, 周献中1,2, 李华雄1,2, 黄兵3, 顾萍萍1
作者信息 +

An intuitionistic fuzzy three-way decision method based on intuitionistic fuzzy similarity degrees

    LIU Jiubing1, ZHOU Xianzhong1,2, LI Huaxiong1,2, HUANG Bing3, GU Pingping1
Author information +
文章历史 +

摘要

针对现有直觉模糊相似度未考虑其隶属度和非隶属度的实践语义且在一些情形下可能出现“违反直觉”等问题,本文提出一种新直觉模糊相似测度,并将其引入直觉模糊决策系统中,定义了直觉模糊相似度下(α,β)-水平截集等概念,并给出相关性质.以粗糙隶属度为评价函数导出目标集的(αβ)-下、上近似集及其三个域.考虑到决策者不同风险态度,基于贝叶斯理论构建一种具有多风险偏好的直觉模糊三支决策模型,并获得决策规则,进而提出一种基于直觉模糊相似度的直觉模糊三支决策方法.最后,通过算例说明该方法的可行性和有效性.

Abstract

With respect to these problems with unconsideration of practical semantics of membership and non-membership degrees and even "counterintuitive results" in some cases. In this paper, we propose a novel intuitionistic fuzzy similarity degree and then introduce it to intuitionistic fuzzy decision systems, in which the (α, β)-level cut sets under intuitionistic fuzzy similarity degrees are defined and the associated properties are given. The (α,β)-lower and upper approximation of the objective set and its three regions:positive region, negative region and boundary region are induced by using the rough membership function served as the evaluation function. Considering different risk attitudes of decision makers, an intuitionistic fuzzy three-way decision model with multiple risk preference is constructed based on Bayesian theory and the corresponding decision rules are derived. Based on which we propose an intuitionistic fuzzy three-way decision method on the basis of intuitionistic fuzzy similarity degrees. Finally, a numerical example is given to show its feasibility and effectiveness.

关键词

直觉模糊相似度 / 直觉模糊决策系统 / 贝叶斯理论 / 三支决策

Key words

intuitionistic fuzzy similarity degrees / intuitionistic fuzzy decision systems / Bayesian theory / three-way decisions

引用本文

导出引用
刘久兵 , 周献中 , 李华雄 , 黄兵 , 顾萍萍. 基于直觉模糊相似度的直觉模糊三支决策方法. 系统工程理论与实践, 2019, 39(6): 1550-1564 https://doi.org/10.12011/1000-6788-2017-1800-15
LIU Jiubing , ZHOU Xianzhong , LI Huaxiong , HUANG Bing , GU Pingping. An intuitionistic fuzzy three-way decision method based on intuitionistic fuzzy similarity degrees. Systems Engineering - Theory & Practice, 2019, 39(6): 1550-1564 https://doi.org/10.12011/1000-6788-2017-1800-15
中图分类号: C934   

参考文献

[1] Yao Y Y, Wong S K M, Lingras P. A decision-theoretic rough set model[J]. Methodologies for Intelligent Systems, 1990, 5:17-24.
[2] Yao Y Y. Three-way decision with probabilistic rough sets[J]. Information Sciences, 2010, 180(3):341-353.
[3] Yao Y Y. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181:1080-1096.
[4] 鞠恒荣, 周献中, 杨佩,等. 测试代价敏感的粗糙集方法[J]. 系统工程理论与实践, 2017, 37(1):228-240.Ju H R, Zhou X Z, Yang P, et al. Test-cost-sensitive based rough set approach[J]. Systems Engineering——Theory & Practice, 2017, 37(1):228-240.
[5] Liu D, Liang D C. Three-way decisions in ordered decision system[J]. Knowledge-Based Systems, 2017, 137:182-195.
[6] Zhang Q H, Lü G G, Chen Y H, et al. A dynamic three-way decision model based on the updating of attribute values[J]. Knowledge-Based Systems, 2018, 142:71-84.
[7] Li H X, Zhou X Z. Risk decision making based on decision-theoretic rough set:A multi-view decision model[J]. International Journal of Computational Intelligence Systems, 2011, 4(1):1-11.
[8] Qian J, Dang C Y, Yue X D, et al. Attribute reduction for sequential three-way decisions under dynamic granulation[J]. International Journal of Approximate Reasoning, 2017, 85:196-216.
[9] Li H X, Zhang L B, Huang B, et al. Sequential three-way decision and granulation for cost-sensitive face recognition[J]. Knowledge-Based Systems, 2016, 91(1):241-251.
[10] Liu D, Li T R, Liang D C. Three-way government decision analysis with decision-theoretic rough sets[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2012, 20:119-132.
[11] Herbert J P, Yao J T. Game-theoretic risk analysis in decision-theoretic rough sets[C]//Proceedings of the 3th International Conferences on Rough Set and Knowledge Technology, 2008:132-139.
[12] Min F, Zhu F. Attribute reduction of data with error ranges and test costs[J]. Information Sciences, 2012, 211:48-67.
[13] Li H X, Zhang L B, Zhou X Z, et al. Cost-sensitive sequential three-way decision modelling using a deep neural network[J]. International Journal of Approximate Reasoning, 2017, 85:68-78.
[14] Liang D C, Liu D. A novel risk decision making based on decision-theoretic rough sets under hesitant fuzzy information[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(2):237-247.
[15] Liang D C, Xu Z S, Liu D. Three-way decisions based on decision-theoretic rough sets with dual hesitant fuzzy information[J]. Information Sciences, 2017, 396:127-143.
[16] Liang D C, Liu D. Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets[J]. Information Sciences, 2014, 276:186-203.
[17] Liang D C, Pedrycz W, Liu D, et al. Three-way decisions based on decision-theoretic rough sets under linguistic assessment with the aid of group decision making[J]. Applied Soft Computing, 2015, 29:256-269.
[18] Sun B Z, Ma W M, Li B J, et al. Three-way decisions approach to multiple attribute group decision making with linguistic information-based decision-theoretic rough fuzzy set[J]. International Journal of Approximate Reasoning, 2018, 93:424-442.
[19] Zhang X X, Chen D G, Tsang E C C. Generalized dominance rough set models for the dominance intuitionistic fuzzy information systems[J]. Information Sciences, 2017, 378:1-25.
[20] Liang D C, Liu D. Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets[J]. Information Sciences, 2015, 300:28-400.
[21] Huang B, Li H X, Feng G F, et al. Inclusion measure-based multi-granulation intuitionistic fuzzy decision-theoretic rough sets and their application to ISSA[J]. Knowledge-Based Systems, 2017, 138:220-231.
[22] Liang D C, Xu Z S, Liu D. Three-way decisions with intuitionistic fuzzy decision-theoretic rough sets based on point operators[J]. Information Sciences, 2017, 375:183-201.
[23] Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20:87-96.
[24] 李华雄, 周献中, 李天瑞,等. 决策粗糙集理论及其研究进展[M]. 北京:科学出版社, 2011. Li H X, Zhou X Z, Li T R, et al. Decision-theoretic rough set theory and its research progress[M]. Beijing:Science Press, 2011.
[25] 张洪美, 徐泽水, 陈琦. 直觉模糊集的聚类方法研究[J]. 控制与决策, 2007, 22(8):882-888. Zhang H M, Xu Z S, Chen Q. On clustering approach to intuitionistic fuzzy sets[J]. Control and Decision, 2007, 22(8):882-888.
[26] Wang Z, Xu Z S, Liu S S, et al. A netting clustering analysis method under intuitionistic fuzzy environment[J]. Applied Soft Computing, 2011, 11:5558-5564.
[27] Viattchenin D A. A method of construction of intuitionistic fuzzy tolerances based on a similarity measure between intuitionistic fuzzy sets[M]//Atanassov K T, et al. New Developments in Fuzzy Sets, Generalized Nets and Related Topics, vol. I:Foundations. IBSPAN-SRI PAS, Warsaw, 2012:191-202.
[28] Kacprzyk J, Viattchenin D A, Shyrai S, et al. A novel similarity measure between intuitionistic fuzzy sets for constructing intuitionistic fuzzy tolerance[C]//Atanassov K. et al. Novel Developments in Uncertainty Representation and Processing. Advances in Intelligent Systems and Computing, vol 401. Springer, Cham, 2016.
[29] 李鹏, 吴君民, 朱建军. 基于新直觉模糊距离的随机决策方法[J]. 系统工程理论与实践, 2014, 34(6):1517-1524. Li P, Wu J M, Zhu J J. Stochastic multi-criteria decision-making methods based on new intuitionistic fuzzy distance[J]. Systems Engineering——Theory & Practice, 2014, 34(6):1517-1524.
[30] Xu Z S, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. International Journal of General Systems, 2006, 35:417-433.
[31] Xu Z S, Yager R R. Intuitionistic and interval-valued intuitionistic fuzzy preference relations and their measures of similarity for the evolution of agreement within a group[J]. Fuzzy Optimization and Decision Making, 2009, 8:123-139.
[32] Huang W L, Yang M S. Similarity measures of intuitionistic fuzzy sets based on the Hausdorff distance[J]. Pattern Recognition Letters, 2004, 24(14):1603-1611.
[33] Montes I, Pal N R, Janis V, et al. Divergence measures for intuitionistic fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(2):444-456.
[34] Xu Z S. Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making[J]. Fuzzy Optimization and Decision Making, 2007, 6(2):109-121.
[35] Xu Z S, Chen J. An overview of distance and similarity measures of intuitionistic fuzzy sets[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008, 16(4):529-555.
[36] Xia M M, Xu Z S. Some new similarity measures for intuitionistic fuzzy values and their application in group decision making[J]. Journal of Systems Science and Systems Engineering, 2010, 19(4):430-452.
[37] 黄兵, 魏大宽. 基于距离的直觉模糊粗糙模型及其应用[J]. 系统工程理论与实践, 2011, 31(7):1356-1362. Huang B, Wei D K. Distance-based rough set model in intuitionistic fuzzy information systems and its application[J]. Systems Engineering——Theory & Practice, 2011, 31(7):1356-1362.
[38] Liu J B, Zhou X Z, Huang B, et al. A three-way decision model based on intuitionistic fuzzy decision systems[C]//International Joint Conference on Rough Sets, 2017:249-263.
[39] Feng T, Mi J S, Zhang S P. Belief functions on general intuitionistic fuzzy information systems[J]. Information Sciences, 2014, 271:143-158.
[40] Wang Z, Xu Z S, Liu S S, et al. Direct clustering analysis based on intuitionistic fuzzy implication[J]. Applied Soft Computing, 2014, 23:1-8.

基金

国家自然科学基金(71671086,61473157,61876079);南京大学博士研究生创新创意研究计划项目(CXCY17-08)
PDF(1061 KB)

538

Accesses

0

Citation

Detail

段落导航
相关文章

/